Пьезогенераторы. Устройство и работа. Особенности и применение

Пьезогенераторы. Устройство и работа. Особенности и применение

С развитием технологий человечество начинает расходовать все меньше энергии понапрасну. Появились солнечные панели, ветровые электростанции, солнечные концентраторы, пьезогенераторы, суперконденсаторы и иные устройства, которые помогают людям получать альтернативную энергию и сохранять ее. Большинство из этих устройств уже используются в повседневной жизни.

Но наука не стоит на месте, в скором времени можно будет получать энергию с помощью повседневных и малозначительных движений. Это можно будет сделать при помощи пьезогенераторов. Ее вполне хватит, чтобы быстро зарядить телефон или плеер. Могут появиться и такие пьезогенераторы, которые будут подзаряжать, к примеру, наручные часы при помощи возбуждения, которое передается сердцебиением.

Устройство

В последние годы было создано несколько опытных образцов пьезогенераторов для различного применения. Они могут быть объединены в два различных класса, которые отличаются по типу колебаний, продольных и поперечных.

Pezogeneratory v stelke dlia obuvi

Пьезогенератор, работающий по продольной схеме колебаний. В данном устройстве одиночный пьезоэлемент монтируется в подкладку обуви, он позволяет генерировать определенную мощность энергии при быстром передвижении, к примеру, при беге человека. Данное устройство изобретено в техническом университете Луизианы и был выполнен в виде специального спирального пластинчатого пьезоэлемента.

На данный момент обеспечить надежность и долговечность подобного устройства затруднительно в виду хрупкости пьезокерамического материала. Однако данная идея может оказаться продуктивной при использовании гибких пьезополимерных пластин. Но подобные материалы на данный момент находятся на стадии исследований.

Не менее перспективны пьезогенераторы, работающие на изгибных колебаниях. Они также могут отличаться своей конфигурацией и конструктивным исполнением.

Pezogeneratory v polu

Для источников питания сравнительно большой мощности созданы опытные образцы макропьезогенераторов самых разных конструкций. К самым продвинутым разработкам подобного класса устройств можно отнести экспериментальную систему накопителей энергии, созданную на основе пьезогенераторов, которые вмонтированы в настил пола у билетных терминалов на входе в станции метро Marunouchi (Токио).

Известно устройство взрывного пьезогенератора, который включает:

  • Устройство инициирования:
  • Генератор ударной волны:
  • Пьезоэлектрический преобразователь, выполненный из набора пьезопластин, соединенных параллельно:
  • Электроды, которые нанесены на противоположные грани пьезопластин, расположены перпендикулярно выходной поверхности генератора ударной волны:
  • Блок пьезопластин размещен в цилиндрический объем, у которого торцевая часть совпадает с поверхностью генератора ударной волны:
  • Генератор ударной волны выглядит как аксиально симметричная конструкция, она выполнена из слоя взрывчатого вещества, конического алюминиевого лайнера и конической алюминиевой крышки.
Принцип действия

Пьезоэффект, который применяется в пьезогенераторах, заключается в том, что в устройстве имеется специальный диэлектрик, к которому прикладываются механические напряжения. В результате диэлектрик на двух разных концах создает разницу потенциалов. В итоге, создавая давление на подобный пьезоэлемент, можно на выходе получить электрическое напряжение определенной величины.

Пьезоэффект также может вызывать и обратное преобразование, то есть обеспечить превращение электрической энергии в механическую, к примеру, для создания звуковых излучателей. По типу применяемого соотношения между вектором поляризации пьезоэлемента и направлением механических колебаний пьезогенераторы можно разделить на классы с поперечным и продольным направлением механического воздействия.

Если рассматривать физику процессов, которые происходят в пьезоэлектрике, подробней, то все выглядит довольно просто. Для этого нужно только понимать принципы генерации энергии пьезоэлектрическими материалами:
  • При механическом воздействии на пьезоэлемент наблюдается смещение атомов в его материале, то есть в несимметричной кристаллической решетке.
  • Данное смещение приводит к появлению электрического поля, которое приводит к индукции зарядов на электродах пьезоэлемента.

В отличие от стандартного конденсатора, обкладки которого способны сохранять заряды весьма долго, индуцированные заряды пьезогенератора сохраняются до момента, пока не перестает действовать механическая нагрузка. Именно в течение данного периода от элемента можно получать энергию. Как только нагрузка снимается, индуцированные заряды исчезают.

Явление пьезоэлектричества открыто братьями Пьером и Джексоном Кюри в 1880 году, с того времени оно широкое распространение в измерительной технике и радиотехнике. Термин «пьезогенераторы» характеризует лишь направление преобразования энергии, а не эффективность превращения. Именно с явлением, связанным с генерацией электричества в случае механического воздействия, заинтересовались инженера и изобретатели в последние годы.

Начали появляться сообщения о возможностях получения электрической энергии при помощи воздействия разной механической энергии:
  • Движение волн и ветра.
  • Воздействие уличного шума.
  • Нагрузки от перемещения машин и людей.
  • Сердцебиение и так далее.

На основе всех этих вариантов стали придумываться различные изобретения. Многие из них уже нашли применение, а некоторые на данный момент находятся в планах, так как технологии не достигли требуемого уровня.

Применения и особенности
На текущий момент известно несколько вариантов практического применения пьезогенераторов в:
  • Пьезозажигалках с целью высокого напряжения на специальном разряднике от движения пальца. Сегодня любой курильщик может носить в кармане собственную «электростанцию».
  • Качестве чувствительного элемента в приемных элементах сонаров, микрофонах, головках звукоснимателя электрофонов, гидрофонах.
  • Контактном пьезоэлектрическом взрывателе, к примеру, к выстрелам гранатомета РПГ-7.
  • Датчиках в виде чувствительного к силе элемента, к примеру, датчиках давления газов и жидкостей, силоизмерительных датчиках и так далее.
Обратный пьезоэлектрический эффект может применяться в:
  • Пьезокерамических излучателях звука, к примеру, музыкальные открытки, всевозможные оповещатели, которые используются в самых разных бытовых устройствах от стандартных наручных часов до техники на кухне.
  • Системах сверхточного позиционирования, к примеру, позиционер перемещения головки винчестера, в сканирующем туннельном микроскопе в системе позиционирования иглы.
  • Излучателях гидролокаторов (сонарах).
  • Ультразвуковых излучателях для ультразвуковой гидроочистки (промышленные ультразвуковые ванны, ультразвуковые стиральные машины).
  • Пьезоэлектрических двигателях.
  • Струйных принтерах для подачи чернил.
  • Адаптивной оптике с целью изгиба отражающей поверхности деформируемого зеркала.
Обратный и прямой эффект пьезогенераторов одновременно используются в:
  • Датчиках на специальных поверхностных акустических волнах.
  • Ультразвуковых линиях задержки специальных электронной аппаратуры.
  • Приборах на эффекте специальных поверхностных акустических волн.
  • Пьезотрансформаторах с целью изменения напряжения высокой частоты.
  • Кварцевых резонаторах, применяемых в качестве эталона частоты.

Большинство из применяемых пьезогенераторов вырабатывают небольшой ток. Отдельные пьезоэлементы могут генерировать высокое напряжение, которое пробивает разрядный промежуток, затем ток поступает на выпрямитель, после чего в накопительное устройство, к примеру, ионистор.

Достоинства и недостатки
Среди преимуществ пьезогенераторов можно выделить:
  • Длительный срок службы.
  • Небольшие габариты.
  • Мобильность.
  • Отсутствие отходов, а также загрязнения окружающей среды.
  • Независимость от погодных и природных условий.
  • Не требует выделения дополнительных площадей.
  • Широкая применяемость пьезогенераторов в самых разных устройствах.
  • Отличное решение в качестве источника электрических зарядов, контроля изоляции, источника высокого напряжения с целью воспламенения и многих других. В некоторых случаях применение пьезогенераторов целесообразно в качестве микромощных источников питания. Максимальное напряжение, которое могут выдавать пьезогенераторы, в большинстве случаев не превышает 1,6 В, чего вполне хватает для небольших источников света, мобильных плееров или мобильных коммуникационных аппаратов.
Среди недостатков пьезогенераторов можно выделить:
  • Небольшой ток. Пьезогенератор является преобразователем, но не источником электроэнергии.
  • Выработка электрического заряда только в момент механического воздействие. Ток идет краткосрочный, что требует внедрение в ряд устройств дополнительных элементов. В результате конструкция усложняется, а значит, утрачивает свою надежность.
  • На текущий момент времени пьезогенераторы не могут использоваться для питания мощных устройств.
Перспективы
  • Развитие технологий в ближайшем будущем позволит использовать пьезогенераторы мощности в случае невозможности применения солнечных батарей. Они смогут эффективно заменить их, для этого потребуется энергия ветра, моря или мускул. Вырабатываемой энергии вполне будет хватать для зарядки аккумуляторов планшетов, ноутбуков и возможно для питания целого дома.
  • Сегодня проводятся опыты по созданию систем с пьезогенераторами, которые могли бы получать энергию от движущегося автотранспорта. По подсчетам ученых километр автобана способен генерировать электрическую мощность, равную 5 МВт. Однако на текущий момент прорыв в этой области альтернативной энергетики останавливает недостаточное развитие технологий.
  • В обозримом будущем будет возможно подзаряжать плеер, мобильный телефон или иное устройство, просто положив его в карман. А сердцебиение человека сможет стать источником тока, к примеру, для портативного датчика артериального давления. Подобные революционные перспективы открываются благодаря созданию плоских миниатюрных «наногенераторов», которые могут при тряске, сгибании или сжатии вырабатывать то же напряжение, что и стандартная батарейка АА.
Похожие темы: